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SIDELOBE LEVEL OF AN ADAPTIVE
ARRAY USING THE SMI ALGORITHM

I. INTRODUCTION

An adaptive antenna array adjusts its antenna element settings so as to null out interfering
sources while maintaining a beam in a desired signal direction [1]. Two such adaptive array confi-
gurations are the "full up" adaptive array and the sidelobe canceller (SLC) illustrated in Figs. l(a)
and l(b), respectively. The full up adaptive array adjusts all the weights on identical antenna array
elements while only the auxiliary antenna weights are adjusted on the SLC configuration. The full up
adaptive array may have some mainbeam constraints associated with it so that a desired mainbeam can
be maintained [1].
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Fig. la - Full up adaptive array

Fig. lb - SLC configuration
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KARL GERLACH

The weights on the full up adaptive array are adjusted so as to maximize the output signal-to-.
noise power ratio, and the weights on the SLC are adjusted so as to minimize the output noise power
residue. If the noise environment is not known a priori, these weight settings cannot be set a priori
but must be estimated from a finite set of incoming data on the input channels. Thus the weight set-
tings will have perturbations about the quiescent optimum weight settings. These perturbations result
in a rise in the adaptive array sidelobe level above the quiescent adaptive array sidelobe level. We
call the nonquiescent sidelobe level that is due to finite sampling and averaging, the transient sidelobe
level.

This report presents an analytical result for predicting this rise in the adaptive array sidelobe
level by use of the Sampled Matrix Inversion (SMI). The SMI algorithm [2] is an open-loop, rapidly
converging, adaptive array implementation whose convergence rate is independent of the external
noise environment. For many years, it has been considered a baseline for fast converging adaptive
array algorithms. Brennan [3] has presented some theoretical and computer simulation results for the
effects of the SMI algorithm on the sidelobe level. His theoretical results pertain to the single auxili-
ary SLC. We generalize these results by examining an array with any number of inputs. Moreover,
many of his observations made as a result of computer simulations are given a theoretical basis.

The SMI algorithm is briefly reviewed in Section II, and pertinent SMI theorems are presented
in Section III. An exact expression for the transient sidelobe level is developed in Sections IV and V.
A discussion of this result appears in Section VI, techniques for lowering the sidelobe level are
presented in Sections VII and VIII, and other techniques that can be used to reduce the transient
sidelobe level are discussed in Section IX.

II. THE SMI ALGORITHM

In this section, we briefly review the SMI algorithm and establish the notation and assumptions
relevant to the succeeding development. Applebaum [4] has shown that the optimal (maximization of
the average output signal-to-noise ratio) adaptive weighting of an N element array is given by

w = tM-ls* (1)

where w is the optimal weighting vector of length N, s is a normalized steering vector related to the
direction of arrival of the desired signal, M is the steady state covariance matrix of the inputs, st is an
arbitrary constant, and * denotes the complex conjugate. More formally we write

W = (W0, WI, ....... , WN_I)T, ..... (2)

X = (XO, XL,...,XN_I) T , (3)

and

M = E{X*XTI, (4)

where T denotes the vector (or matrix) transpose operation, Et } denotes the expected value, and X0,
Xl, * , XNI are the inputs of the adaptive array. Because M is generally not known a priori, it and
thus the adaptive weights must be estimated from sampled data. Hence, time samples of the nth
channel, Xn (k), are taken where k indexes the sampled data. Note that the data on each channel for a
given k are time coincident.

2
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For this development, we make the following assumptions unless otherwise noted (the same
assumptions were made in Ref. 2).

1. The X1, X2, ... , XN are zero mean stationary Gaussian random variables (r.v.).

2. Xn,(k1 ) is independent of X, 2(k2) for n1 * n2 or k, * k2-

3. The estimated adaptive weights are computed from an input data set that is independent of
the data that are adaptively weighted by the adaptive array. (We call this nonconcurrent
processing.)

4. The desired signals are not present during the adaptive weight computation.

With respect to Assumption 3, if the weights are computed and applied to the same set of data, we
call this concurrent processing and the output residue is called the concurrent output.

We write the sampled input vector as

X(k) = (Xo(k), Xl(k), * , XNl(k))T. (5)

For the SMI algorithm, the covariance matrix M is estimated as

M = K E X*(k)XT(k), (6)
k=1

where the caret over the M denotes an estimate, K is the total number of independent samples per
input channel, and K 2 N so that M is not necessarily a singular matrix. Note that Al is calculated
in "batch" style from a block of K by N input data. Thus after Al is calculated, we find the esti-
mate of w as

= ,tMIs*. (7)

As K - 0, M-M, so that for an infinite number of samples, the optimal array weighting vector
is obtained.

In many instances in the following discussion we refer to the SLC configuration of an adaptive
array. For this configuration

S = (l,O, ., O)T and w 0 = 1; (8)

i.e., the desired signal is present only in the 0th channel, which we call the main channel. The N -1
other channels referred to as the auxiliary channels are used to cancel unwanted signals (noise) from
the main channel. Note that the condition that w0 = 1 is a constraint on the optimal weighting vec-
tor.

We define

Xa = (X1, X2, * * XNlI)T, (9)

Wa = (w1, w2, .. . , wNl)T, (10)

Xa(k) = (Xl(k), X2(k), j. , xN..I(k)) T , (1 1)

3
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Ma = E[X*aXaT), (12)

and

ram = E[X*aX}, (13)

where the subscript a refers to the auxiliary channels. It can be shown that the optimal weighting
vector of the auxiliary channels for the SLC configuration is given by

Wa = + Ma- 1ram, (14)

Again with no a priori information, it is necessary to estimate Ma and ram. These estimates are given
by the expressions

Ma = - X X*(k )X,,T(k) (15)
KkMa =

and

ram = -Ad X* (k)Xo(k). (16)
Kk =1

For the steady state weights or optimal weights, we can write

N-I
X0 = A wnX, + e, (17)

n =1

where

EfeX*al = 0. (18)

Equation (18) is merely an exemplification of the orthogonality principle.

III. SMI THEOREMS

In this section, we present and prove (or cite references for) a variety of theorems related to the
SMI algorithm. We use these theorems in later sections to derive closed form solutions for the tran-
sient sidelobe level of an adaptive array.

Theorem 1: If the input vector X is transformed by a nonsingular matrix A, then the estimated
transformed weights W' are related to the estimated untransformed weights * by the relationship

A AT*, (19)

Proof. We know that

= M''s'* , (20)
where

M -a, [AX (k)]* [AX (k)IT (21)
Kk=l

4
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and

s' = As. (22)

Using Eq. (22), we can show that

M' = A*MA T. (23)

Using Eqs. (21) and (22) in Eq. (20), we find that

= [A*MAT]-i(As)* (24)

= (AT)-I AV's*

(A T) - 1 .

The theorem follows from Eq. (24).

Similarly, we can show

Theorem 2: If the adaptive array is in the SLC configuration and the auxiliary input vector Xa is
multiplied by a nonsingular matrix transform A, then the estimated auxiliary weights V' are related to
the estimated untransformed auxiliary weights wa by the relationship

*a = AT Tv. (25)

Theorem 3 is cited in Ref. 2.

Theorem 3: There exists a unitary matrix U that transforms the steering vector s into the vector
(1, 0, ... , 0 )TJ where sts = 1.

Theorem 3 is important to our development because it allows us to transform any unconstrained adap-
tive array into the SLC configuration.

Theorem 4: If the input data vector X or Xa is multiplied by a unitary matrix U, then

EIw'.i E " = E '] (26)

or for the SLC configuration

E{f*a0 = Ewa*way. (27)

Equations (26) and (27) follow directly from the fact that UUt = I.

N-I
Theorem 5: If X 0 = , c0 Xn and the adaptive array is in the SLC configuration, then the concurrent

n =1
output of the SMI canceller is exactly zero independent of K, the number of independent samples per
channel taken..

5
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Proof: We write

N-I
XO(k) = c0 X,(k) = XT(k)c, (28)

n=1

where we define

C = (CD, C2, ... ,cNI)T. (29)

Thus

K
rrw= K Sx*(k)xaT(k)c (30)

Kk=l a

MaC.

Hence if we solve Mawa = .. a = Mac, we see that *a = c, and the theorem follows.

Theorem 6 results from Theorem 5.

N-I
Theorem 6: If X 0 = r c0 X, + e, then the concurrent output noise residue is independent of

N-1 n=1
E cn Xn-

n =1

Theorem 6 is exemplified by Fig. 2. Here, we implement two parallel cancellers; one cancels
N-I
r cn Xn, and the other cancels e. Note that separate estimated weighting vectors are computed for

n =1
each canceller. As a result of Theorem 5, the left-hand canceller always has zero residue. Hence the

final residue R is dependent on only the right-hand canceller's output residue.

N

n = 1

t R

Fig. 2 -Equivalent SMI canceller
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Theorem 7 was first proved by Reed et al. [2].

Theorem 7: If assumptions 1 through 4 are satisfied and

Z (SIN)3 (31)

(SIN)Opt (1

where (3 IN) is the sampled signal to noise ratio given by the expression

(S/N) = *'M* (32)

and S/N) is the optimal signal-to-noise ratio given by

(S/N) = wtMw, (33)

then the probability density function (p. d.f) of z is

p(Z) = (N 2)!(K + 1 N)! (1 z)N-2zK+I-N , Q Z C 1. (34)

From this theorem, Brennan and Reed [5] showed that

Theorem 8: If assumptions 1 through 4 are satisfied and the adaptive array is in the SLC configura-
tion, then

as~mI(K, N) _ K K>:-N, (35)
U2nn K-N+1

where Us2MI(K, N) is the average output noise power residue of the N input SMI canceller using K
samples, and Or2,,n is the minimum output noise power residue (K = oo).

We can show that

as2M,(K, N) = E XO| 2} - E4tMaVa } (36)

and

an~ln = E |X| 21 - wat Mawa w (37)

IV. SIDELOBE LEVEL MEASURE

In this section, we derive an expression for the sidelobe level contribution of the adaptive array
that comes as a result of estimating the optimal adaptive weights. We consider the two adaptive array
configurations, full up and SLC.

We simplify the full up adaptive array analysis by transforming the full up array into an SLC
configuration by invoking Theorem 3. (The appendix gives a simple procedure for finding U when
-N's = (1, eo, e 2j° , e(N-1)jt)T). Let U be the unitary transform such that

Us = (1, 0, 0, ... , 0)T. (38)

7



KARL GERLACH

We place the SLC constraint (w0 = 1) on the adaptive weights that are computed after this transfor-
mation. We shall see that this unitary transformation does not change the transient sidelobe level.

Let

gq(o) be the quiescent antenna pattern with no adaptation (0 _ k < 2ur),

gqa (k) be the quiescent adaptive antenna pattern (K = xo),

ga (0) be the adaptive antenna pattern (finite K),

wq be the quiescent adaptive weighting vector (K = Gc, SLC configuration),

w be the estimated adaptive weighting vector (finite K), a random variable,

Aw = w- w, a random variable,

v(M = (1, ejO, e2j, ... , e(N-I)jO)T, and

u, be the nth row of U.

The auxiliary inputs have the following antenna patterns:

gn (c) = unTv(O), n = 1, 2, . .. , N - 1. (39)

We define a vector of length N - 1 of these auxiliary antenna patterns:

g (q) = (g1(¢), g2(k), - X. g 11 ,_;(,))T. (40)

By using the above defined quantities, it is simple to show that

9a.() = gq(O) _ WTg (k) (41)

= gq(ck) - (Wq + AW)TUV(¢O).

Taking the expected value over the Aw of the magnitude squared of Eq. (41) results in

EAWt | ga (') 121 = |gq(k) - WqTUV(O) 12 + E AwtU*V*&()VT(Ok)UTAW. (42)

The fact that EjwtAwI = 0 was used in the above derivation. Note that

gqa () = gq () - WqUV 6k), (43)

so that

EAzWt I g" (6) 121 = I gq, () 12 + EA.WfAw' U*V*(O)VT(O)UTAWj. (44)

8
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Thus we see that the adaptive transient sidelobe level contribution, ASLa, is given by

ASLa = EAW tAw'U*v*(0)vT(0)UTAwI. (45)

The average contribution is found by averaging ASL_ over 0 < 4 < 2wr. Because

E01v*6(0)vT(60) = 1 2r v**(O)vTT()dO (46)

where I is the (N - 1) x (N - 1) identity matrix, it follows that

ASLa = E[wt Awj, (47)

where ASLa is the average transient sidelobe level for a full up adaptive array, and we have dropped
the Aw subscript from the expected value notation.

Consider the SLC configuration as shown in Fig. l(b). Here

g, () = Gejmn" , n = 1, 2, ... , N - 1, (48)

where mncj0, 1, .. , N - 1), the mn are distinct for each n, and G is an arbitrary gain associated
with the auxiliary antenna elements. Similar to the preceding development for the full up array, we
can show that

ASLa = G2 E[AwtAwI. (49)

Hence the SLC configuration's average sidelobe level expression is the same as the full up adaptive
array except for the factor G2. We use Eq. (49) for both configurations by defining G = 1 for the
full up array.

Note that as a result of Theorem 4, the unitary matrix transformation of the input channels does
not change ASLa. Also due to the form of ASLa given by Eq. (49), Assumption 3 as given in Sec-
tion II, need not hold.

V. SIDELOBE LEVEL DERIVATION

In this section, we derive an exact expression for the average transient sidelobe level, ASLa. In
the derivation we consider only the SLC configuration, but the result is applicable for the full up
array.

Consider the concurrent output residue of the SMI canceller as shown in Fig. 3. Here

R = X0 _ XTXa (50)

= XO - (Wq + AW) TXa.

9
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AUX CHANNELS

Fig. 3 - Representation of SMI canceller

Using Eq. (17), we can write

R = e - AWTXa, (51)

where e is statistically orthogonal to Xa. In fact, invoking Theorem 6, we see that

Aw = M. ae ,

where

l K
Fae = K X *(k)e(k)k=a

and e(k), k = 1, 2, . . ., K are the time samples of e.

Since the auxiliary input covariance matrix is hermitian, we can write

(52)

(53)

(54)Ma = A A,

where A is a diagonal matrix of the eigenvalues of M and 4> is a matrix of eigenvectors of M. Note
that we assume that all powers are referenced to the internal noise level, which we set equal to one.
The eigenvalues can then be divided into two classes: significant eigenvalues >> 1, and noise eigen-
values that are approximately equal to 1 or the internal noise power level.

We transform the auxiliary input by the matrix transform A-1 12 4A* as shown in Fig. 4, where
A- 1 1 2 designates a diagonal matrix whose diagonal elements are equal to the square root of the
corresponding diagonal elements of the inverse of A. Using Theorem 1, we see that

Aw = (A- 1/ 2d*)T AW' (55)

= VtA-l/2 AWi.

Thus

EfAw'Awl = EfAw'A- l/24WA-l/ 2Aw't. (56)

10
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AUX CHANNELS

I/I1X I X2 1XN-1\

Fig. 4 - Orthogonalization of the
auxiliary channels

Now let

Aw' = (AWj, AW2, ... , Aw )..I)T, (57)

*0 = (1, Awl, Aw2, ... , Awk), _ (58)

and X1, X2, XN-1 be the eigenvalues of Ma (and the diagonal elements of A). Because 44' = I,
we can rewrite Eq. (56) as

N-i 1
EfAwt Aw) = A -Et Awn 121 (59)

n=i n

Because of symmetry, we know that

E[IAwl'2 1 = E I AW2, = El I= E[IAwI -. (60)

Also, the nonconcurrent output noise power residue is given by

as2MI(K, N) = E{f*M'wOj, (61)

where M' is the covariance matrix of the inputs (main and auxiliaries) of the SMI canceller shown in
Fig. 3. Because all the inputs are independent random variables, M' is an N x N diagonal matrix
with the first diagonal element equal to nn and all other diagonal elements equal to 1 so that

N-I
aSMI(K, N) = anin + EEt Awn 1 2. (62)

n =1

11
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From Theorem 8 and Eq. (62) it follows that

N-i = N I - + a2n K N. (63)
n=i K N +1UnnI(3

From Eqs. (60) and (63), it follows that

Et I Awn' 2 K -N + 1 mnin' n = 1, 2, ... ,N -1. (64)

Hence, substituting Eq. (64) into Eq. (59), we have shown that

ar2 N-I 1

E ft AAW W = KE (65)

or the average transient sidelobe level contribution is given by

G 2 U.2in N-1 K N. (6

a K _N + I n=l an' 66

VI. DISCUSSION

We see from the expression derived for the average transient sidelobe level, Eq. (66), that _SLa
is eigenvalue dependent: the more significant eigenvalues (X> >1) there are, the smaller ASLa is.
In addition, we observe that ASLa increases with the gain on the auxiliary elements G. As Brennan
[3], pointed out, there is a tradeoff in selecting G in that although ASLa increases with G, the output
noise residue after cancellation decreases because the adaptive weights are smaller, resulting in less
amplification of the internal noise in the auxiliary channels. The effect of G2 on the eigenvalues is to
increase the significant eigenvalues proportionally (those >> 1) but leave the noise eigenvalues
unchanged and approximately equal to one. Finally, we see from Eq. (56) that as expected,
ASLa - 0 as K - Xo, and that the transient sidelobe level increases as the steady state residue UnLn
increases.

We note that for the full up adaptive array the eigenvalues we are referring to are those of the
N - 1 auxiliary inputs. Hence these depend on the unitary matrix transform U, which created those
auxiliary inputs. However, since the number of significant eigenvalues is generally equal to the
number of degrees of freedom (DOFs), NDOF, needed to effectively suppress a given external
environment noise, we see that the number of significant eigenvalues is a constant. Hence, if
X1 > X2 > ... XNDO >> 1 and X, 1 for N > NDOF, then we can approximate ASLa as

DOF ~ ~ ~ ~ 02 DO 

ASLa = Gmin i N + I (67)

Equation (67) can be used to properly specify the number of independent samples per channel K
necessary for the adaptive array sidelobes to settle within some arbitrary value of the quiescent adap-
tive sidelobe level. If SLa is the average sidelobe level of gjo) and SLqa is the average quiescent
sidelobe level of, gqa k(), then we can write

12
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S~a=SL + 20,2 N -NDOF -lSL. = SLqa + Gmm K-N+ 1 (68)

We find the K to be such that SLa is within 3 dB of the quiescent adaptive sidelobe level, SLqa. This
is found simply to be

K3dB=N -1) I+ _ -NDOF - (69)L qa Sqa

If SLq is the average quiescent sidelobe level when the sidelobe cancellor is disabled (all weights
set equal to zero), then normally the adaptive array is designed so that the quiescent adaptive sidelobe
level is equal to SLq and 2,min = 1. If we define GM = G/SLq to be the gain margin of the auxili-
ary antenna elements with respect to the main antenna's average sidelobe, then we can show by using
Eq. (69) that

K3dB = (N - 1) (1 + GM) - NDOFGM (70)

When there is no external interference, then SLa is at a maximum. For this worst case,
NDOF = 0, so that

SL. < G2 K N + I (71)

In addition, for this worst case, K3dB is at a maximum, SLq is exactly equal to SLqa, and Un2, = 1.
We use this worst case scenario to specify K3dB:

K3dB = (N - 1) (1 + GM). (72)

We set Na,,, = N - 1, the number of auxiliary input channels, and plot K3dB/NaW, vs GM in Fig. 5.
Note that for GM >> 1, K3dB is directly proportional to the gain margin. Hence large gain margins
result in long settling times for the adaptive sidelobes.

VII. SIDELOBE LEVEL REDUCTION BY NOISE INJECTION

In this section, we give the theoretical basis to a technique discussed in Refs. 3, 6, and 7, which
significantly reduces the settling times of the adaptive sidelobes. For this technique, arbitrary
independent noise is injected into each auxiliary channel (SLC configuration). This noise is indepen-
dent from sample-to-sample, channel-to-channel, and has noise power equal to a2. It can be shown
that in the steady state the adaptive auxiliary weights are given by

Wa = (Ma + 2J) I-rm. (73)

After the auxiliary weights have been calculated by using the SMI algorithm, these weights are then
applied to auxiliary data (concurrent or nonconcurrent) that do not contain the injected noise. The
noise power of the injected noise, a2, is chosen so that the steady state noise power residue is not
significantly increased (normally within 1 dB). Brennan [3], using computer simulation, showed that
a2 can be chosen to be much greater than one (the referenced internal noise power level) without
seriously degrading cancellation performance.

13
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1000

- 30 - 20 - 10 0 10 20 30

GAIN MARGIN (dB), GM

Fig. 5 - K3dBINaL vs the gain margin

Figure 6 shows the SLC configuration with noise injection. The effect of injecting noise is to
increase each of the auxiliary eigenvalues by 02 so that

- ~~G2u 2 N-i1
ASLa = K- in - 1 (74)

Thus for u2>> 1, and u2 <<X1 , X2 ,..', XNDOF.

ASL = G2 r2. N - NDOF-Il
ASLa mG (75)

and

K3dB = (N - 1) + GM 2 - NDOFGM m2 (76)

Note that ASLa is significantly decreased (by 1/02) by using noise injection. Also the sidelobe set-

tling time is similarly decreased.

14
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MAIN AUXILIARIES

,INJECTED
NOISE

R

Fig. 6 - SMI canceller using noise injection

Again if we consider the worst case (no external noise), then

K3dB GM
= 1 + (77)

VIII. SETTLING TIME REDUCTION BY NOISE INJECTION

If we use the noise injection technique described in the preceding section, we can also decrease
the settling time of the nonconcurrent output noise power residue. To see this we define the follow-
ing quantities:

r lw(5.Si). Et I R 1 2J Tf is the steady state (K = mo) output noise power residue by use of the
noise injection technique, TJ

Et I R 1 2} T{ is the output noise power residue for finite sampling by use of the noise injection tech-
nique, T]

E[ I Rin 2} T[ is the steady state output noise power residue if weights are applied to auxiliaries with
injected noise, TI

E [ I Rrn 1 2J T[ is the output noise power residue for finite sampling is the weights are applied to auxi-
liaries with injected noise, T]

Wa ,in T[ is the steady state auxiliary weights by use of the noise injection technique, and T]

,a in T[ is the estimated auxiliary weights by use of the noise injection technique. T]

AWain = Wa,in - Wa,in (78)

Main = Ma + 021. (79)
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Now we know that

El IR I21 Et [xI - WainXa 121, (80)

and we can show that

Et RJ21 = El IX WainXa 121 (81)

= EtXO - (Wa,in + AWa,in )T Xa 121

= E[IR 121 + E[Aw'inMaAWain1

= EtlR 121 + E{AwajnMajn/waji 1 + o2EuiwainAWa in1

Using Theorem 8, we can show that

E[IRiizI 212}+ E{AW~asjnMjnWa~in1 = ER I 12 LK N + 1] (82)

or

E I M{WaKinw Min a,inI = EtIRinR1 121 N - 1 (83)

In Section V, we show that

E ' tAw- Et I Ri 121 N-i 184
tAwaeinAWasinj K -N+1 n= Xn +a2 (84)

Hence, substituting Eqs. (83) and (84) into Eq. (81) and normalizing,

ElI R|2 = 1 + E I I Rin }12 N - I a 2 N-I 1 (85)
E{RI2 FU12R 12 [K -N + K -N +l 1 +a 2 j

Now normally a2 is chosen so that E | Rin 21 E |R 121. We then rewrite Eq. (85) as

El I R 12 1 K a2 N-I1 (86)

E[Rl 2 K -N + I K -N + 1 n=X (n + 86

We see from Eq. (86) that the noise eigenvalues (X 1) in the summation will dominate, and if
a2 >> 1, then

EtR 12} K N - 1 -NDOF
EuIRI2 I< K N l-N l(87)EI IR 121 K - N + I K -N + I

or

El I 12j K -N + NDOF + 1 (88)
EuIR12 1 K -N +1

16



NRL REPORT 9079

If we calculate how many samples K3dB are needed so that the output noise power residue is within 3
dB of the quiescent value, we find

K3dB = N - 1 + NDOF. (89)

Note that, N C K3dB ' 2N, depending on the number of DOFs used. Also, Eq. (89) implies that
the less DOFs used, the faster the settling time. With no noise injection, K3dB = 2N - 2 [3].
Hence noise injection decreases the adaptive algorithm settling time.

Another method to reduce the settling time of the SMI algorithm is to estimate the number of
DOFs needed and set the number of auxiliaries equal to NDOF. One method for estimating NDOF is to
count the number of significant eigenvalues of the estimated auxiliary covariance matrix. A less com-
putationally intensive technique is to use the open-loop Gram-Schmidt (GS) canceller [8,9] to imple-
ment the SMI. Here, the noise power at each level of the main channel in the GS structure is moni-
tored by using finite averaging. Note that for a finite K that if N > NDOF, the output noise power in
the main channel decreases and then increases at the successive levels through the GS structure. Thus
the cancellation process in the main channel is terminated at the level where the noise power is mea-
sured to be a minimum. Hence the number of levels prior to this termination point is estimated to be
equal to NDOF. If we compute K'3dB for the DOF's monitoring technique, then

K3dB = 2 NDOF - 2. (90)
As a result for the three techniques

normal 2Na (91)

noise K3dB _ NDOF

injection N = 1+ N (92)ala aUX

DOF K3'dB _ NDOF
N 2-2 (93)monitoring Na = Na(3

where Nau,, = N - 1.

We plot these quantities vs NDOFINaux in Fig. 7. Note that the DOF monitoring technique is
faster converging than is the noise injection technique. Hence, DOF monitoring with the GS can-
celler implementation offers a computationally efficient and fast converging adaptive canceller algo-
rithm. Also, because K3dB is a measure of how perturbed the adaptive weights are about their
optimal values, we see that the transient sidelobe settling times should be faster by the use of DOF
monitoring.

IX. OTHER SIDELOBE LEVEL REDUCTION TECHNIQUES

In this section, we briefly discuss other techniques that can be used to reduce the average tran-
sient sidelobe level. The basis of these techniques is to reduce the number of auxiliary input channels
N - 1 of the SLC to the necessary number of DOFs, NDOF.
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NDOF/Naux

Fig. 7 - K3dB/N. vs NDOF/N._ for three SLC techniques

The first technique is to form N - 1 orthogonal auxiliary beams that cover the 0 to 27r angular
space. This can be done by setting the unitary matrix transform U equal to the Butler matrix B
where

B = rn-I)m-) n, m = 1, 2, ,N - 1 (94)

and

27r

IFNI = e , j = -1. (95)

Thereafter, only those beams that contain high levels of external interference are inputted into the
SLC SMI canceller. Hence the number of nonsignificant eigenvalues is reduced so that ASLa will be
reduced. Also, the effects on the main channel's sidelobe level are localized around where (in angle)
the various external interferences appear. Problems involved with this technique are the significant
amount of hardware necessary to generate N - 1 beams and the assurance that enough beams are
used to suppress the external noise environment (there may be multiple interferences in a single
beam).

A second technique related to the first technique is to generate auxiliary beams that point at the
various external interferences. Even though the auxiliary beams may not be orthogonal, the effects
on the main channel's sidelobe level are localized around where in angle the various interferences
appear. A prerequisite for this technique is that the interference's approximate (within an auxiliary
antenna beamwidth) angular position be known. This can be done by use of a variety of techniques
(for example, superresolution [10]).
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Appendix

UNITARY MATRIX TRANSFORM OF A STEERING VECTOR

In this appendix, we give a simple procedure for generating a unitary matrix transform U,
which transforms the following steering vector

I= (1, e e', e , e(N-1)j0)T (Al)

into the (1, 0, 0, ... , 0 )T vector. First, we define an N x N diagonal matrix S, such that the diag-
onal elements are equal to the corresponding elements of the steering vector s. Next, we select any
unitary transformation U0, such that all of the first row elements equal 1/XV_. Examples of this kind
of matrix are the Butler (see Eq. (90)) and the Hadamard matrices. Finally we set

U = U0S*. (A2)

It is elementary to verify that UU' = I and that UOS*s = (1, 0, 0, .. ,)T.
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